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Summary

Nonlinear programming algorithms play an important role in
structural design optimization. Fortunately, several algorithms

with computer codes are available. At NASA Lewis Research

Center, a project was initiated to assess performance of differ-

ent optimizers through the development of a computer code
CometBoards. This paper summarizes the conclusions of that

research. CometBoards was employed to solve sets of small,

medium and large structural problems, using different optimizers

on a Cray-YMP8E/8128 computer. The reliability and effi-

ciency of the optimizers were determined from the perfor-

mance of these problems. For small problems, the performance
of most of the optimizers could be considered adequate. For

large problems however, three optimizers (two sequential

quadratic programming routines, DNCONG of IMSL and SQP
of DESIGN, along with the sequential unconstrained minimi-

zations technique SUMT) outperformed others. At optimum,

most optimizers captured an identical number of active dis-

placement and frequency constraints but the number of active
stress constraints differed among the optimizers. This discrep-

ancy can be attributed to singularity conditions in the optimiza-
tion and the alleviation of this discrepancy can improve the

efficiency of optimizers.

Introduction

Nonlinear programming algorithms play an important role

in structural design optimization. Fortunately, several algorithms

with computer codes have been developed during the past few

decades. To assess performance of different optimizers, a

project was initiated at NASA Lewis Research Center and a

computer code called CometBoards, which is an acronym for
Comparative Evaluation Test Bed of Optimization and Analysis

Routines for the Design of Structures (ref. 1), was developed.
Because licenses for some of the optimization codes has

expired, numerical results are provided herein for six optimizers.
CometBoards incorporates about a dozen popular optimization
codes. These are: the feasible directions method (FD; ref. 2);

fully utilized design (FUD; ref. 3); genetic algorithm (GENMO;

ref. 4); generalized reduced gradient method (GRG; ref. 5); the
DNCONG of the IMSL routine (ref. 6); modified feasible

direction method (MFD; ref. 7); NPSOL, which is available in

the NAG library (ref. 8); the optimality criteria methods (OC;

ref. 3); the reduced gradient method (RG; ref. 9); the sequential

linear programming method (SLP; ref. 2); the sequential qua-

dratic programming technique (SQP of IDES IGN; ref. 10); the

sequence of unconstrained minimizations technique (SUMT;
ref. 11); and the cascade strategy, which includes more than one

optimization algorithm (ref. 12). CometBoards was employed
to solve a set of 41 structural problems by using its eight

optimizers on a Cray-YMP8E/8128 computer. The reliability

and efficiency of the eight optimizers were ascertained on the

basis of the performance of these problems. The problems were

solved for multiple load conditions, and behavior constraints

were imposed on stresses, displacements, and frequencies. The

examples were selected so that at optimum, numerous stress,

displacement, and frequency constraints were active. Initial

design, upper and lower bounds, and convergence parameters

were specified to ensure that the evaluation had no bias towards

any particular optimizer or any particular problem. The eight

optimizers might have been updated during the time
CometBoards was developed, but any such improvements were
not accounted for.

Evaluations of optimizers that are available in the literature

(refs. 13 to 21) deal broadly with individual code validation by

their developers. The studies lacked uniformity because prob-

lems and computational platforms differed and the evaluations

were over a decade old. For example, Arora, (refs. 14 and 15),

the developer of SQP of IDESIGN, compared his algorithm to

the NAG/NPSOL optimizer. Most of Arora's problems were
trusses for stress and displacement constraints and were solved

on a PRIME 750 computer. Schittkowski, who is the developer

of the DNCONG optimization routine in the IMSL library,

essentially validated his code (refs. 16 and 17) by solving many

theoretical examples on a Telefunken-TR-400 computer.

Venkayya (ref. 18), one of the developers of ASTROS, in

which OC and FD optimizers are used (ref. 19), attempted an

evaluation of a few practical problems on a VAX 11/785

computer. An intermediate complexity wing problem, used by

Venkayya with stress and displacement constraints (ref. 18), is



alsoincludedinourtestbedwiththeadditionof frequency
constraints.Ragsdell'sevaluation(refs.20and21)includes
mostlysimplemechanicalapplicationproblems.Ourcurrent
paperdiffersfromthoseavailablein theliteratureinseveral
respects:(1)asingletool,CometBoards,evaluatesalleight
optimizersonacommonCray-YMPcomputer;(2)solutionsto
asetofproblems,whichweregroupedintocategoriesofsmall,
medium,andlarge,areused;and(3)designparameterswere
selectedto ensurethattheevaluationhadnobiastowards
problemsoroptimizers.Inbrief,thecomprehensiveevaluation
presentedinthispaperdoesnotduplicatepreviouswork.This
paperpresentsa brieftheoryof optimizationmethods,a
descriptionof CometBoards,a summaryof thenumerical
examplesandtheirsolutions,discussion,andconclusions.

Symbols

FD feasible directions

FUD fully utilized design

GENMO genetic algorithm

GRG

IMSL

MFD

NPSOL

OC

RG

SLP

SQP

SUMT

generalized reduced gradient method

international mathematical subroutine library

modified feasible direction method

nonlinear programming package of the systems

optimization laboratory

optimality criteria

reduced gradient

sequential linear programming

sequential quadratic programming

sequence of unconstrained minimizations technique

Theory of Optimization Methods

Structural design can be formulated as: Find the n design

variables _, within prescribed upper and lower bounds (xL <x i
< x U, i = 1,2 ..... n) which make a scalar objective function f( x )

an extremum (here, minimum weight) subject to: a set of m i
• . . a. . ,.)

mequallty constral_s gj(x) > 0, (j = 1 ....... mi) and m e equality
constraints gj+m, (x) = 0 (j = 1,2 ..... me).

Stress, displacement, and frequency behavior constraints were

investigated in this study. A cursory account of representative

optimization methods available in CometBoards is provided

herein. Readers may refer to specified references for details.

(1) The sequence of unconstrained minimizations technique

(SUMT), as implemented in the code NEWSUMT, is available

in CometBoards. In NEWSUMT, the penalty function has been

modified to improve efficiency and a modified Newton's

approach is used to calculate the direction vector while a golden

section technique is used to determine step length.
(2) Sequential linear programming (SLP), as implemented

in design optimization tools (DOT 2.0) is available in

CometBoards. From the original nonlinear problem, a linear

programming subproblem is obtained by linearizing a set of

critical constraints and the objective function around a design

point. The linearization process and linear solution sequence is

repeated until convergence is achieved.

(3) The method of feasible directions (FD), as implemented
in DOT 2.0, is available in CometBoards. In FD, a usable

feasible direction is used. A minimum along the search direc-

tion is generated by polynomial approximation.
(4) SQP of IDESIGN, DNCONG of IMSL, and NPSOL in

NAG, three implementations of the sequential quadratic pro-
gramming technique, are available in CometBoards. In this

technique, the original nonlinear problem is solved through a

sequence of quadratic subproblems. In SQP of IDESIGN, a

Lagrangian function is approximated. The step length is obtained
by minimizing a composite descent function. DNCONG of

IMSL uses quasi-Newton updates for the Hessian of the

Lagrangian function while the constraints are linearized

(ref. 22). The step length for an augmented Lagrangian is
calculated using a bisection method (ref. 23). NPSOL in NAG

also uses an augmented Lagrangian. The search direction is

generated through a quadratic subproblem while step length is

calculated using an augmented Lagrangian, which is designed

to avoid discontinuities as much as possible.
(5) The reduced gradient method (RG), as implemented in

the code OPT, has been incorporated into CometBoards. This

method partitions the design variable into decision and slave

variables and a reduced gradient is used to generate a search

direction• A line search is carried out by bounding the minimum

and then calculating the minimum within some tolerance.
(6) The optimality criteria method (OC), available in

CometBoards, can be considered as a variant of the Lagrange

multiplier approach applied to structural design problems. In

OC, an iterative scheme is followed to update the multipliers

and the design variables separately.

Description of CometBoards

The basic organization of CometBoards is depicted in figure 1.

The central executive with command level interface (fig. I)

links the three modules (optimizer, analyzer, and data input) of

the code to formulate and solve an optimization problem. The

analyzer options are the displacement method (refs. 8 and 20),
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Figure 1.---Comparative evaluation test bed of optimization and analysis
routines for the design of structures (CometBoards).

the integrated force method (refs. 3 and 25), and the simplified
force method (ref. 3), etc. There are three input data files, one

for analysis (anldat), one for design (dsgndat), and one for

optimization (optdat). CometBoards has considerable flexibil-

ity in solving a design problem by choosing any one of the
available optimizers and any one of three analyzers. A more

detailed description of CometBoards can be found in the
reference 1, User's Manual.

Example Problems

The numerical test bed of CometBoards includes over 41

problems, most of which were taken from the literature (refs. 1,
3, 18, and 26 to 31). Minimum weight was the objective and a

linking strategy was followed to reduce the number of design

variables. Stress, displacement, and frequency behavior con-
straints were considered. Multiple static load conditions and

consistent elemental mass for dynamic analyses were also con-

sidered. The load conditions, mass distributions, and behavior

limitations were specified to ensure that several types of behav-

ior constraints were active at the optimum. The initial design of

unity was considered for all problems unless otherwise speci-
fied. Each problem had a consistent set of upper and lower

bounds specified. Typically, default optimization parameters

and convergence criteria specified in the individual codes were

used. These parameters, however, were changed when conver-

gence difficulty was encountered. Results for all 41 examples
are summarized in table I. The normalized optimum weight and

the normalized Cray-YMPSE/8128 CPU time for a select set of

14 examples are given in table II and depicted in figures 2 to 5.

The weight was normalized with respect to the optimum weight
obtained for the best feasible design. A brief description of the

14 examples follows.

Examples Pla to Pld: 3-Bar Truss

The popular 3-bar truss (refs. 3, 26, 30), as shown in fig-
ure 6, (with modulus E = 30 000 ksi, and density p = 0.1 lb/in. 3)

was subjected to a single load condition. It had three design
variables, and six constraints (3 stress, two displacement and

one frequency). Optimum weight and CPU time are depicted in

table II (Pla, P1 b, Plc, Pld), and figures 2 and 5. The optimum

weight was 92.87 lb and one stress, one displacement, and one

frequency constraints were active. Five optimizers (SUMT,
SQP, IMSL, NPSOL and RG) performed satisfactorily. OC

was inadequate, yielding a 38.6 percent over-design. The

problem was solved again for three different initial designs (the

SUMT optimum design, 150 percent of SUMT optimum, and

50 percent of SUMT optimum). Results followed the pattern of

the earlier problem where the initial design was unity. The CPU
times on the Cray-YMP computer required for different

optimizers are depicted in figure 5. For unit initial design, SQP

required the least CPU time of 0.14 sec, while RG was most

expensive at 3.18 sec.

Example P2: Tapered 10-Bar Truss

A tapered 10-bar aluminum truss (ref. 3), shown in figure 7,
was subjected to two load conditions. It had 10 design variables,
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number

Pla

Plb

Plc

Pld

1'2-

P3

P4

P5

P6

P7

P8a

PSb

P8c

P8d

pc)

Pl0

Pll

PI2

Pl3

PI4

P15

PI6

PI7

P18

PI9

P20

P21

P22

P23

P24

P25

P26

P27

P28

P29

P30

P31

P32

P33

P34

P35

Problem description and
number of design variables

TABLE I.-- SUMMARY FOR 41 TEST BED PROBLEMS

Constraints

specified

3S, 2D. IF

3S, 2D, IF

3S, 2D, IF

3S. 2D_ IF

20S, 4D, IF

16S. 4D, IF

50S. 36D

504S, 24D, IF

180S. 3D, IF

252S, ID, IF

316S, 4D. IF

316S. 4D. IF

316S, 4D, IF

316S, 4D T IF

20S, 4D, IF

20S, 4D, 1F

36S. 4D, IF

36S, 4D, 1F

16S, 4D, IF

16S, 4D, IF

32S, 4D, IF

64S, 4D, IF

96S, 4D, IF

128S. 4D, IF

3-bar truss (3 IDV, ID = I)

3-bar truss (3 IDV, ID = OPT)

3-bat truss (3 IDV, ID = 1.5 x OPT)

3-bar truss f3 IDV. ID = 0.5 x OPT_

Tapered t0-bar truss (10 [DV)

Tapered cantilever beam (8 IDV)

25-bar truss (8 LDV)

165 feet tall antenna tower (6 LDV)

I 60.bar trussed ring (25 LDV)

Geodesic dome (12 LDV_

Intermediate Complexity Wing (57 LDV, ID --IO)

Intermediate Complexity Wing (57 LDV. ID =OPT)

Intermediate Complexity Wing (57 LDV, ID =1.5 x OPT)

Intermediate Complexity Wing/57 LDV, ID --0.5 x OPT)

lO-bar truss (10 IDV)

lO-bar truss (5 LDV)

Stiffened 10-bar truss (18 IDV)

Stiffened 10-bar truss 1"2 LDV)

Cantilever membrane ( 8 IDV)

Cantilever membrane ( I LDV)

Cantilever membrane 16-quad elements (16 IDV)

Cantilever membrane 32-.quad elements (16 LDV)

Cantilever membrane 48-quad elements (16 LDV)

Cantilever membrane 64-quad elements (16 LDV)

60-bar trussed ring (25 LDV)

60-bar trussed ring (25 LDV)

60-bar trussed ring (25 LDV)

60-bar trussed ring (25 LDV)

60-bar trussed ring (25 LDV t

Stiffened 60-bar trussed ring (49 LDV)

Stiffened 60-bar trussed rlng (49 LDV)

Stiffened 60-bar trussed ring (49 LDV)

Stiffened 60-bar trussed ring (49 LDV)

Stiffened 60-bar trussed ring (49 LDV)

Stiffened 60-bar trussed ring I49 LDV 1

i180S

3D

IF

1gOS, 24D

24D, IF

252S

Stiffened ring (24 IDV)

Stiffened ring (24 IDV)

Stiffened ring (24 IDV)

Stiffened ring (24 IDV)

Stiffened ring (24 IDV)

Stiffened ring (24 IDV)

31)

IF

252S, 24D

24D, 1F

252S. 3D, IF

72S

3D

IF

72S, 24D

24D, IF

72S. 3D. IF

SUMT

IS, ID, IF

IS, ID, IF

IS, ID, IF

IS. tD. IF

7S, 2D, IF

6S

4D

a7S, 12D, IF

Active constraints for optimization codes

sQP
IS. 1D, 1F

IS, ID, IF

IS, ID, IF

IS. ID. IF

gS, 2D, 1F

6S

41)

6S, 12D, IF

21S, ID. IF

162S. ID. 1F

IMSL

IS, ID, IF

IS. ID, IF

IS. ID, IF

IS. ID. IF

8S, 2D. IF

6S

4D

6S, 12D, IF

NPSOL RG

IS, ID, IF IS. 1D, IF

IS, ID, IF IS, ID, IF

IS, ID, IF IS, 1D. IF

IS_ ID, IF IS. ID. IF

gS, 2D. IF IS, IF

6S 6S

4D '2D

6S, 12D, IF alF

OC

_IF

_IF

_IF

alF

a5S. 2D, IF

4S

(a)

(a)

106S, 1D

(a)

109S, ID

17S. ID, IF

7S, 2D, IF

6S, 2D, 1F

8S

6S

IS

IS, 4D

IS, 4D

13S, 4D

t2S. 4D

38S

ID

(a)

28S, ID

alD. IF

75S

ID

IF

75S, ID

1D, 1F

44S. IF

28S

ID

IF

28S. ID

tD. IF

17S. 1F

21S. ID, tF

168S, ID, 1F

117S, ID, IF

106S, ID

115S, ID, IF

'99S, ID, IF

8S, 2D, IF

6S, 2D. IF

9'5

ZS

6S

IS

{a)

41)

_13S. 4D

a29S_ 4D

"35S

ID

IF

a30S, ID

ID. IF

75S

_ID

IF

75S, ID

ID, IF

46S, I F

28S

ID

1F

27S, I D

ID, IF

17S. IF

21S, ID, IF

156S. ID. IF

117S, ID, IF

117S, ID. 1F

a88S, ID, IF

la)

8S. 2D, IF

6S, 2D, IF

8S

6S

IS

4/D

4D

15S, 4D

31S.4D

38S

ID

IF

27S, ID

ID, IF

75S

ID

IF

75S. ID

ID, IF

46S, IF

28S

ID

IF

28S, 1D

ID, IF

17S. IF

aOptimum weight obtained differs by more than 5 percent or constraint violation more than 1 percent (see ref. 1,_

IDV: Independent design variable ID: Initial design LDV: Linked design variable OPT: SUMT optimum design
S: Stress constraints

]19S, 1D, IF

162S. ID. IF

75S, 1D, IF

!llTS, ID. IF

a 14S

8S, 2D, IF

6S, 2D, IF

9S

2S

6S

IS

a4S

_9S

_8S

a16 S

38S

1D

1F

29S, ID

aiD. 1F

75S

(a)

(a)

75S, ID

aiD

46S. 1F

28S

(a)

(a)

28S, ID

17S. 1F

al8S, ID, IF _IOS, 1F

aI8S. ID _12S

a6S a 19S

106S, ID a42S

_7S (a)

a7S Iat

alF _5S. 2D. IF

a3S, IF 6S. 2D. IF

IS 5S

alF 2S

6S 4S

IS IS

_5S 4t3

_4S 4D

_3S 13S, 2D

{a) 23S, 2D

14S 40S

_ID ID

_IF alF

a20S 18S. ID

atF _ID r IF

75S "59S

ID ID

IF IF

76S, ID _17S

ID, IF ID, IF

47S. IF _3S

27S 28S

ID ID

IF IF

25S, ID _18S, ID

ID, IF ID. IF

17S. IF al6S. IF

D: Displacement constraints F: Frequenc_ constraints

4



TABLE II.--OPTIMUM WEIGHT AND CRAY-YMP 8E/8128 CPU TIME FOR
SELECTED SET OF EXAMPLE PROBLEMS

Optimization methods

Problem SUMT SQP IMSL NPSOL RG OC

number Weightbl CPU Weight b CPU Weight b CPU Weight t' CPU Weight b CPU Weight b CPU

Pla 1.001 1.799 1.000 1.000 1.000 1.972 1.000 2,076 1.000 22.069 1.386 10.257

Plb 1.001 7.833 1.000 1.000 1.0CO 9.633 1.0130 155.267 1.000 5.567 1.386 49.233

PIc 1.001 1.588 1.000 1.000 1.000 1.662 1.000 31.818 1.000 2.000 1.386 10.000

Pld 1.001 1.926 1.000 1.0(_3 1.000 2.733 1.000 14.444 1.000 16.452 1.386 10.985

P2 1.000 1.500 1.000 1.0130 1.000 1.133 1.000 1.022 (Failed) -- - 1.056 9.324

P3 0.999 1.268 1.000 1.000 1.000 0.976 1.001 3.169 1.000 6.121 1.028 16.834

P4 1.000 2.533 1.000 1.000 1.000 1.539 1.000 3.759 (Failed) (Failed)

P5 a0.940 1.065 1.019 1.0001 1.019 1.134 1.017 5.026 (Failed) --- 2.773 4.62

P6 1.000 1.605 1.000 1.000 1.000 1.120 1.000 3.899 1.832 20.716 al.041 8.279

P7 1.021 0.538 1.000 1.000 1.015 0.550 1.016 0.658 2.022 0.066 2.976 4.456

P8a 1.004 1.116 1.000 1.000 1.000 1.695 1.037 7.712 (Failed) --- 1.201 1.571

P8b 0.790 1.680 1.000 1.000 1.000 5.884 1.000 3.323 1.004 0.089 1.350 8.076

P8c 1.000 1.000 a0.998 0.571 al.077 0.602 1.346 0.244 1.471 0.627 1.000 0.666

PSd 1.000 1.000 a0.981 0.244 (Failed) _0.501 0.028 (Failed) --- 1.0130 0.276

alnfeasible design.

bNormalized weight.
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Figure 2.--Performance of different optimizers for small problems.
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Figure 3.--Performance of different optimizers for medium problems.
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Figure 4.--Performance of different optimizers for large problems.
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Figure 5.--Cray-YMP cpu time for different optimization methods for 14 problems.
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Figure 6.--Three-bar truss. (Elements are circled, nodes
are not.)
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Figure 7.--Tapered ten-bar truss. (Elements are circled, nodes are not.)
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Figure 8.--Tapered cantilever beam modeled with eight triangular membrane elements.
(Elements are circled, nodes are not.)

and 25 behavior constraints (20 stress, four displacement, and

one frequency). The optimum weight was 3326.74 lb with 11

active constraints (8 stress, two displacement, and one fre-

quency). Four optimizers (SUMT, SQP, IMSL, and NPSOL)

converged for this example. Optimizer RG failed, and OC was

marginal at 5.6 percent over-design. Cray-YMP CPU time
varied between 1.28 sec for NPSOL and 1.91 sec for SUMT.

Example P3: Tapered Cantilever Beam

The cantilever truss of example P2, was modeled next using

8 triangular membrane elements, as shown in figure 8. The
loads and constraints were identical to example P2. The eight

thicknesses of the elements were considered the 8 design

variables. The problem had 21 constraints (16 von Mises stress,

four displacement and one frequency). Optimum results
obtained are given in table II. The optimum weight was
1440.24 lb with six active stress constraints. Five optimizers

(SUMT, SQP, IMSL, NPSOL, and RG) performed well while

OC produced a 2.8-percent over-design (see table II). Cray-
YMP CPU time varied from 1.79 sec for IMSL to 11.22 sec for

RG.

Example P4: 25-Bar Truss

A 25-bar aluminum truss (refs. 26 and 27), as shown in fig-

ure 9, had 8 linked design variables, and was subjected to two
load conditions. It had a total of 86 behavior constraints,
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Figure 9.--Twenty-five bar-truss. (Elements are circled,
nodes are not.)

(50 stress and 36 displacement). Four optimizers (SUMT, SQP,

IMSL, and NPSOL) converged to an optimum weight of

544.73 lb with four active displacement constraints (tables I

and II). Optimizers RG and OC failed. Cray-YMP CPU time

ranged from 1.64 sec for SQP to 6.15 sec for NPSOL.

Example P5: 165-Ft-Tall Antenna Tower

A 165-ft-tall steel antenna tower with 252 members, as

depicted in figure 10, (ref. 26), had six linked design variables

and was subjected to two load conditions. Its overhead dish

antenna was modeled as a lumped mass for frequency calcula-
tions. It had a total of 529 behavior constraints (504 stress, 24

displacement, and one frequency). Three optimizers (SQP,

IMSL, and NPSOL) converged to an optimum solution of
5299.84 lb with small deviations (table II). At optimum, six

stress, 12 displacement, and one frequency constraints were

active. Optimizers RG and OC failed while SUMT produced a

six percent under-design. The Cray-YMP CPU time varied

between 376.83 sec for SQP and 1893.80 sec for NPSOL.

Example P6: 60-Bar Trussed Ring

A 60-bar trussed aluminum ring (ref. 3) was subjected to

three load conditions and had two lumped masses, as depicted

in figure 11. It had a total of 184 constraints (180 stress, three

displacement, one frequency) and 25 linked design variables.

The optimum weight was 414.51 lbs, and at optimum, 22 stress,

one displacement, and one frequency constraints were active.

Four optimizers (SUMT, SQP, IMSL, and NPSOL) converged

(table II). Optimizer RG failed, whereas OC produced a 4.1 per-

cent over-design with a 1.1 percent constraint violation. Cray-

YMP CPU solution time ranged from 36.96 sec for SQP to
144.11 sec for NPSOL.

Z

Figure lO.--One-hundred-sixty-five-ft tall
antenna tower.

Example P7: Geodesic Dome

A geodesic dome (refs. 28 and 29), shown in figure 12

with a diameter of 240 in. and height of 30 in., was subjected to

a single load condition. It was modeled using 156 bars and

96 triangular membrane elements. The bars were made

of a material with modulus E = 30 000 ksi, and density p =
0.1 lb/in. 3Membranes were made of aluminum, with modulus

E = 10 000 ksi, and density p = 0.I lb/in. 3 The bar areas and

membrane thicknesses were grouped to obtain eight and four
linked design variables, respectively. The dome had a total of
254 constraints, (156 stresses for bars, 96 von Mises stresses for

membranes, one displacement, and one frequency). The opti-

mum weight obtained was 1022.67 lb with 170 active con-
straints, (168 stress constraints, one displacement, and one

frequency (table I). Four optimizers (SUMT, SQP, IMSL, and

NPSOL) converged with small deviations. Optimizers RG and

OC failed. The Cray-YMP CPU time varied between 448.32 sec
for SUMT to 548.36 sec for NPSOL.
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Figure 11.--Sixty-bar trussed ring. (Elements are circled, nodes are not.)
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z

Figure 12._Geodesic dome. (All boundary nodes are fully restrained. Supports are shown for three
sides only. Supports for other sides are not shown.)

4 0 _21 3

Z 2
9 17

8 8

1 9

o
Figure 13.--Intermediate complexity wing. (Representative elements are circled,

nodes are not.)

Examples PSa to P8d: Intermediate Complexity Wing

An intermediate complexity wing (refs. 3 and 18), shown in

figure 13, was modeled with a total of 158 elements consisting
of 39 bars, two triangular membranes, 62 quadrilateral mem-

branes, and 55 shear panels. The wing is made of aluminum
with modulus E = 10 500 ksi, and density p = 0.1 lb/in. 3 The

elements were grouped to obtain 57 linked design variables.

The wing, which was subjected to two load conditions, had a
total of 321 behavior constraints, (316 stress, four displace-

ment, and one frequency). The optimum design for this prob-
lem was obtained from four different initial points, (1) initial

design of unity; (2) initial design equal to the SUMT optimum

design; (3) initial design equal to 150 percent of the SUMT
optimum design; and (4) initial design which is infeasible at

50 percent lower than the SUMT optimum design. Results
obtained for all four cases are summarized in table II (P8a to

P8d). The optimum design was 387.76 lb and there were a total
of 119 active constraints, (117 stress, one displacement, and

one frequency). For initial design of unity (see table II, problem

P8a), optimizers SUMT, SQP, IMSL, and NPSOL reached the

optimum within a 3.7-percent error margin. Optimizer RG

failed to solve the problem. Optimizer OC also failed to con-

verge to the optimum (producing 20. l-percent over-design).

Cray-YMP CPU time varied between 1075.21 sec for SQP to
8292.35 sec for NPSOL.

12



Discussion

For the purpose of this discussion, the 41 problems of the test

bed are grouped as small, medium, and large. For the small

problems (Group I), the number of linked design variables

ranged between three and 19. Group I contains a total of

19 problems, which are designated as Pla to P5, P7, and P9 to
P18. The normalized optimum weight for small problems

obtained by each optimizer is depicted in figure 2. For medium

problems (Group II), the number of linked design variables

ranged between 20 and 39. There are 12 medium problems,

which are designated as P6, P19 to P23, and P30 to P35. The
normalized optimum weight for the medium problems ob-

tained by each optimizer is illustrated in figure 3. Problems with

more than 40 independent design variables are referred to as

large problems (Group III). There are 10 large problems which

are designated as P8a to P8d, and P24 to P29. The normalized

optimum weight for large problems obtained by each optimizer

is depicted in figure 4.

The following discussion is divided into five categories: (1)

convergence to the optimum weight, (2) number of active
constraints at optimum, (3) Cray-YMP8E/8128 CPU time

required to solve the problem, (4) singularity in structural

optimization, and (5) default optimization parameters.

Convergence to Optimum Weight

The normalized optimum weights for all 41 problems, ob-

tained by the six optimizers are depicted in figures 2 to 4 for

small, medium, and large problems, respectively. In these

figures, unity represents optimum weight and more than unity
indicates over-design, while less than unity is infeasible design.

For the purpose of comparison, a solution with constraint

violation of less than one percent and weight which is within

one percent of the best feasible design is considered optimum.

A design is acceptable when the constraint violation is less than

one percent and the weight is within five percent of the
minimum obtained by the eight optimizers. Convergence to the

optimum solution for each of the six optimizers follows.

(1) SUMT converged to optimum solution for 35 of 41

examples, which consisted of 17 small, nine medium, and nine

large problems. SUMT failed for four problems. These are: one
small problem (P5), two medium problems (P21 and P23), and

one large problem (PSb). For both medium problems, the
SUMT solution was more than one percent infeasible. For the

large problem, SUMT gave an under-design of more than five

percent.
(2) SQP of IDESIGN, successfully solved 32 of 41

examples, which consisted of 15 small, 10 medium, and seven

large problems. This optimizer failed to give a feasible opti-

mum design for three small problems (P 15, P 17, and P 18), two

medium problems (P19 and P22), and three large problems

(P8c, P8d, and P25).

(3) IMSL optimizer DNCONG successfully solved 37 of 41

examples, which consisted of 17 small, 12 medium, and eight

large problems. DNCONG of IMSL failed to optimize the

intermediate complexity wing (problems P8c and P8d).

(4) NPSOL successfully solved 25 of 41 examples, which
consisted of 13 small, eight medium, and four large problems.

This optimizer failed (with an infeasible design over one

percent) for: four small problems (PI5 to PI 8); four medium
problems (P23, P31, P32, and P34); and four large problems

(P8d, P25, P26, and P28). It produced more than five percent

over-design for large problem P8c.

(5) RG successfully solved 13 of 41 examples, which con-
sisted of seven small, four medium, and two large problems.

RG failed for 12 small problems. It also failed for seven

medium problems and three large problems. The optimizer RG

failed with well over 100 percent error in the optimum weight

for 15 problems.
(6) OC successfully solved 16 of 41 examples, which con-

sisted of six small, five medium, and five large problems. OC

failed for nine small, two medium, and five large problems with

an error in the optimum weight exceeding five percent, as well

as for three medium problems with an infeasible design greater

than one percent.

Number of Active Constraints at Optimum

The number of active constraints at the optimum for all

examples is given in table I. Typically, different optimizers pro-
duced identical numbers of active frequency and active dis-

placement constraints. However, the number of active stress
constraints generated depended on the optimizer of choice. For

example, with the geodesic dome problem (P7), the number of
active stress constraints produced were 168 by SQP of IDESIGN,

162 by SUMT and NPSOL, and 156 by IMSL. Consider also

the set of five examples depicted in table III that failed to

converge, which produced minimum weights between 3.2 to

12.7 percent over- or under-designs. These examples produced
correct numbers of displacement and frequency constraints, but

failed to produce the correct numbers of active stress con-

straints. The deficiency in the number of active stress con-

straints ranged between three for problem P2 to 42 for problem

P8a. For these problems the failure of the optimizers could be
attributed to their inability to produce the correct number of

active stress constraints. This aspect is also described in the

section entitled, "Singularity in Structural Optimization" of

this paper.

CPU Time Required For the Solution

The normalized CPU times on a Cray-YMP8E/8128 com-

puter were recorded for a set of 14 examples. The normalization

was with respect to SQP of IDESIGN except for problems
P8c and P8d, which were normalized with respect to SUMT

13



TABLE IlL--FOUR EXAMPLES THAT FAILED TO REACH OPTIMUM WEIGHT

VERSUS BEST FEASIBLE DESIGN

Problem

number

P2

P6

P8a

P8c

Optimization Percent

method over-design

OC 56

vs. SQP 0

RG 83.2

vs. SQP 0

NPSOL 32

vs. IMSL 0

IMSL 7.7

vs. SUMT 0

Number of active constraints at

optimum versus best feasible design

Frequency

I

1

Stress Displacement

5 2

8 2

18 I

21 1

75 I

117 1

88 I

109 I

TABLE IV.--PROBLEMS WITH ACTIVE CONSTRAINTS EXCEEDING

THE NUMBER OF DESIGN VARIABLES

[Sir can occur in each of these problems.l

Problem Description
number

P2 Tapered ten-bar tress

P5 Antenna tower

P7 Geodesic dome

PSa Intermediate complexity wing

P9 Ten-bar truss

PI0 Ten-bar truss

PI7 Cantilever membrane

P18 Cantilever membrane

I PI9 Sixty-bar trussed ring

P22 Sixty-bar trussed ring

P24 Stiffened ring

P27 Stiffened sixty-bar trussed ring

P30 Stiffened ring

P33 Stiffened rin_

Number of

design
variables

10

6

12

57

10

5

16

16

25

25

49

49

24

24

J Number of active

constraints

at optimum

11

20

170

t19

II

9

19

35

38

30

75

76

28

28

(table II and fig. 5). CPU time differed among optimizers. Even

for a small problem (Pla), normalized CPU time differed from

1.0 for SQP to 22.069 for RG. For a medium problem (P6),
normalized time differed between 1.0 for SQP to 3.899 for

NPSOL. For a large problem (P8a), normalized CPU time
varied from 1.695 for IMSL to 1.116 for SUMT and 1.000 for

SQP oflDESIGN. We observed that variation in CPU time was

rather mild for large problems.

Singularity in Structural Optimization

Singularity was identified for three situations (refs. 3 and
30):

(1) the number of active constraints exceed the number of

design variables. Out of the 41 problems the 14 examples listed

in table IV are prone to this type of singularity.

(2) linear functional dependencies among a small number of

active stress constraints. This type of singularity is suspected to

have occurred for some of the examples given in table III.

(3) linear functional dependencies among a small number of
active stress and displacement constraints. The identification of

this type of singularity by mere inspection may be difficult.

Singularity alleviation as discussed in references 8, 26, and

27 can reduce computation and improve reliability of optimizers

(fig. 14).
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third of the examples. For large problems, the Cray-YMP CPU

time was comparable among the optimizers that succeeded.

Alleviation of singularity can improve the optimizer efficiency.

A single winner which can be called most reliable and

efficient could not be identified. Overall, three optimizers
(IMSL, SUMT, and SQP of IDESIGN) scored high marks. For

small problems, four optimizers (IMSL, SUMT, SQP of

IDESIGN, SLP, and NPSOL) satisfactorily solved more than

fifty percent of the problems. For medium problems, four

optimizers (IMSL, SQP of IDESIGN, SUMT, and NPSOL)

produced correct solutions for at least half of the problems. For

large problems three optimizers (IMSL, SUMT, and SQP of

IDESIGN) were found to be reliable and efficient.
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Figure 14._Convergence characteristics of a three-bar
truss, showing the merit function (weight) versus the
number of iterations (breaks in the graph indicate weight

up to the order of 105 Ib). (a) Solution when singularity is
disregarded. (b) Solution when singularity is alleviated.

Default Optimization Parameters

Default parameters (such as convergence criteria, step length,

stop criteria, active constraint region, iteration limitations, etc.)

specified by individual optimization codes, were used to solve

the problems. When a problem failed, the default parameters
were changed in an attempt to successfully solve the problem.

In the solution of the 41 test bed problems, it was necessary to

change the default optimization parameters quite often in order
to reach the correct solution. On an overall basis, default

parameters of SUMT, SQP, and IMSL algorithms were ad-

equate for the solution of most problems. Most of the default
parameters for RG and NPSOL were changed to improve their

performances.

Concluding Remarks

None of the optimizers could successfully solve all the

problems. Most optimizers, however, can solve at least one
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